

Thank you for purchasing this Team Associated product. This manual contains steps and instructions you will use to set up your car. Please read this entire manual before attempting to start your car. Follow the directions in this manual closely to reduce any problems on start up. We hope that you will enjoy your new Team Asssociated car.

TEAM NTC3 KIT

KIT INCLUDES:

Threaded shocks.
2-speed Transmission. Pro-Line wheels \& tires. Aluminum MIP CVD's. Associated steel turnbuckles.

Also includes:

6061 T6 aluminum chassis. Precision rubber-sealed ball bearings.
Tuned pipe and manifold.

REQURED EQUPMENT TO RUNYOUR KIT

WARNING!

Do not use a power screwdriver to install screws into nylon, plastic, or composite materials. The fast rotation speed can heat up the screws being installed. They can break the molded parts or strip the threads during installation.
for the pull start version of
Team Kit \#2030:
Glow plug starter.
Model car fuel.
Fuel bottle.
Receiver battery pack. Glow plugs (AE \#MC-59).
R/C two channel surface frequency radio system with two servos.
.12 or .15 c.i. glow fuel R/C engine.
200mm touring car body.

YOU WILL NEED THESE TOOLS

TO ASSEMBLE YOUR KIT
(1) Phillips screwdriver \#2.
(2) $1 / 8^{\prime \prime}$ flat head screwdriver.
(3) $5 / 16$ " driver or glow plug wrench.
(4) Needlenose pliers.

5 Thread locking compound (\#1596 Locking Adhesive or equivalent)
(6) Super glue or tire adhesive (\#1597).
$(7$ Hobby knife WARNING! This knife cuts plastic and fingers with equal ease, so be careful.
(8) Precision ruler.
for the non pull start version of Team Kit \#2031

Glow plug starter.
Model car fuel.
Fuel bottle.
Receiver battery pack.
Glow plugs (AE \#MC-59).
Starter box or electric hand starter with car starter donut 12 volt battery for starter system.
R/C two channel surface frequency radio system with two servos.
.12 or .15 c.i. glow fuel R/C engine.
200mm touring car body.

TOOLS SUPPLIED
Allen wrenches (\#6950)

Clutch nut wrench (\#1721)

Molded tools (\#6956):

Droop gauge (\#3987)

Track width/ride height tool (\#1719) 20

READ THE MANUAL!

This manual is for two different NTC3 kits and will help you assemble and set up each one. Read the manual before starting your kit and before contacting us for help. "Hello, Associated, I need some help." "Did you read the manual?" OPEN THE BAGS IN ORDER
The assembly is arranged so that you will open and finish that bag before you go on to the next bag. Sometimes you will have parts remaining at the end of a bag. These will become part of the next bag. Some bags may have a large amount of small parts. To make it easier to find the parts, we recommend using a partitioned paper plate for spreading out the parts so they will be easier to find.

SUPPLEMENTAL SHEETS

We are constantly updating parts to improve our kits. These changes, if any, will be noted in supplementary sheets located in a parts bag or inside the kit box. Check the kit box before you start and each bag as it is opened. When a supplement is found, attach it to the appropriate section of the manual.

MANUAL FORMAT

The following explains the format of these instructions.

The beginning of each section indicates:

1 Which bag to open ("BAG A") and which steps you'll be using those parts for ("FOR STEPS 1-3").
2 Which parts you will use for those steps. Remove only the parts shown. "1:1" indicates an actual size drawing; place your part on top of the drawing and compare it so it does not get confused with a similar part.
3 Which tools you should have handy for that section.
4 The instructions in each step are ordered in the order you complete them, so read the words AND follow the pictures. The numbers in circles are also in the drawing to help you locate them faster.
5 When we refer to left and right sides of the car, we are referring to the driver's point of view inside the car. 6 You'll see a car angled in a particular direction in several steps. The angle shows you which way the part is being viewed, helping you to tell front and rear, left and right.

step 1

TOOLS USED

SWING RACK ASSEMBLY

(1) Attach two \#3857 short ball ends to the \#2228 swing rack and one to the \#2228 swing rack arm.
(2) Slide the \#3929 spring and \#2228 rack shim onto the \#6918 screw. Slide the screw assembly through the bottom of the swing rack.
(3) Attach the \#2228 swing rack arm to the swing rack with a \#4449 locknut.
(4) Tighten down the screw until the screw end is even with the top of the nut.

Match this number to the text to find your way faster

BARA
REMOVE THESE PARTS FOR:
Steps 2-3

7337, qty 2 washer

2234, qty 2 $3 / 16 \times 5 / 16$. 109 bushing unflanged

2229, qty 2 screw

6291, qty 2 $4-40 \times 1 / 4$ screw

2224, qty 1 NTC3 chassis

2229, qty 2 swing rack mounting post

2234, qty 2 $1 / 8 \times 1 / 4$ bushing

6472, qty 2 nylon locknut

2228, qty 2 swing rack bellcrank arm

$\operatorname{stg} 2$

(1) Slide the \#2229 pivot post through the swing rack followed by a \#2228 swing rack bellcrank arm.
(2) Slide one \#7337 washer onto the \#2229 screw then slide the screw through the pivot post. Now tighten down the screw, but not to the point of damaging the threads.

step 3

SWING RACK TO CHASSIS

(1) Install the two \#2229 swing rack mounting posts to the \#2224 chassis with \#6291 screws.
(2) Slide one \#2234 $3 / 16 \times 5 / 16$ " bushing onto each post. Slide the swing rack assembly down, making sure the mounting posts are in front of the rack.
(3) Now insert the \#2234 $1 / 8 \times 1 / 4$ " bushings into the rack assembly where shown.
Fasten the swing rack down with \#6472 nylon locknuts. Tighten down each nut until the swing rack doesn't move freely. Then loosen each nut a $1 / 4$ turn or until it moves freely.

CAR SHOWS VIEWING ANGLE

BMAB

 REMOVE THESE PARTS FOR: Steps 1-3

2243, qty 2 rear a-arms, right \& left

2231, qty 1 rear arm front mount

2240, qty 8 $5-40 \times 7 / 16$ screw
2257, qty 2 ball end

2226, qty 1 front bumper/ arm mount

TOOLS USED

PUT ASIDE THE \#2233 \& \#2243 UPPER ARMS UNTIL THEY ARE CALLED FOR IN BAG E.

FRONT ARM ASSEMBLY

(1) Install a \#3865 set screw into each of the \#2233 front arms, making sure there is a right and a left side. (We will do the final screw adjustment in step 3.)
(2) Attach the \#2231 front arm, rear mount to the chassis with two \#2240 screws.
(3) Slide the \#2242 hinge pins through the \#2233 arms. Slide the pins with the arms into the arm mount.
(4) Align the \#2226 front bumper/ arm mount with the two hinge pins and slide together. Tighten it down with two \#2240

$\operatorname{sten} 2$

REAR ARM ASSEMBLY
(1) Install a \#3865 set screw into each of the \#2243 rear arms, making sure there is a right and a left side. (We will do the final screw adjustment in step 3.)
(2) Attach \#2231 rear arm front mount to the chassis with two \#2240 screws.
(3) Slide the \#2242 hinge pins through the \#2243 rear arms. Slide the pins with the arms into the \#2231 rear arm front mount.
(4) Install the two \#2257 ball ends into the \#2231 rear arm mount. Align the rear arm mount up with the two hinge pins and slide together. Tighten down with two \#2240 screws.

step 3

SETTING DROOP

(1) Place the supplied \#3987 droop gauge on a flat surface. Place the bottom of the chassis on top as shown. Make sure the screws are not resting on the gauge and that you are holding the chassis and gauge flat.
(2) Slide the gauge out so the shock mounting portion of the front arm rests on step 4. With your $3 / 32$ Allen wrench, adjust the set screw so the outer part of the arm just touches the step. Adjust both front arms.
(3) Slide the gauge to the rear arms and repeat the adjustment. The shock mounting portion of the rear arms will rest on step 3 .

BIAC
REMOVE THESE PARTS FOR:
Steps 1-5

2329, qty 2 ring gear

6591, qty 1 Tranny lube

3976, qty 4
$3 / 8 \times 5 / 8$ bearing rubber sealed, unflanged

2331, qty 4 drive ring

6909, qty 4 $3 / 16 \times 5 / 16$ bearing unflanged

6573, qty 4 thrust washer

6575, qty 2 diff bolt

2332, qty 2 friction disc

Step 1

DIFFERENTIAL RING GEAR
(1) Trim any burrs from the edges shown with a hobby knife.
(2) Slide a \#6909 bearing into the \#2332 friction disc. Slide the bearing and disc into the center of the \#2329 ring gear.
(3) Add a generous amount of \#6591 dif lube to the \#2329 ring gear holes and friction disc. Push in the twelve \#6581 diff balls. Now push the lube back in that

step 3

SHORT OUTDRIVE

(1) Remove any oil residue thoroughly where shown. Hold the \#6573 diff bolt with your 5/64" Allen wrench and slide one \#6573 thrust washer onto the \#6573 diff bolt.
(2) Apply a generous amount of \#6588 black grease to the washer on the side facing away from the bolt head.
(3) Place six \#6574 balls into the grease against the \#6573 bolt and washer. Add the second \#6573 washer. The grease will hold the balls in place during assembly, sandwiching the balls and washers.
(4) Slide the thrust assembly into the \#2328 short outdrive, being careful not lose any of the balls.
(5) Add a light coat of \#6591
lube to the short outdrive face as shown.
(6 Place a \#2331 drive ring and then the gear assembly on the 6 outdrive.

LONG OUTDRIVE

(1) Remove any oil residue thoroughly where shown. With a pair of pliers, compress the \#6582 spring a few times. Push the \#6582 diff spring into the \#2328 long outdrive.
(2) Slide the \#2330 T-nut into the long outdrive.
(3) Insert one \#6909 bearing into the face of the long outdrive.
(4) Add a light coat of $\# 6591$ dif lube to the long outdrive face as shown. Place a \#2331 drive ring on the outdrive face.

step 4

(1) Holding the short outdrive assembly still with your $5 / 64$ " Allen wrench, place the long outdrive assembly into the face of the short outdrive / gear assembly.

CHECK THE ALIGNMENT
2 Tighten the diff together with your 5/64 Allen wrench, but not completely.
NOTE: You may need to hold the T-nut in place when assembling the two outdrives.
3 Rotate the diff hubs several times as you are tightening the bolt to check proper alignment of the parts. READ STEP 4 CAREFULLY.

ADJUST THE DIFF

4 As you tighten the diff bolt, you will notice the T-nut ears moving closer to the bottom of the outdrive slot. This compresses the spring behind the Tnut. The spring should be fully compressed at the same time the T-nut reaches the end of the slot. CAUTION: Pay close attention to the feeling when the spring is fully compressed. Do not overtighten the bolt. When you feel the spring fully compressed, loosen the diff bolt $1 / 4$ of a turn for the front and $1 / 2$ of a turn for the rear. Your diff should now operate very smoothly with the outdrives moving in opposite directions. After you have driven the car once, recheck the diff adjustment.
5 Now assemble the second diff the same way.
Once you have fully tightened the diff bolt and spring, use the chart at right to fine tune your NTC3 settings. for FRONT DIFF
(1) Place one \#2293 outdrive shim on both the long and short outdrives.
(2) Place one \#3976 bearing over each
outdrive.

Amount the diff bolt is turned out from tight position (counter clockwise)

CAUTION: Do not turn the diff bolt out more than 3/4 of a turn.

BIA

REMOVE THESE PARTS FOR:
Step 6

3920, qty 1 front input shaft

2293, qty 3 input shaft shim

6299, qty 1 small E-clip

3977, qty 2 $3 / 16 \times 3 / 8$ bearing, rubber sealed

3903, qty 1 drive pinion

2270, qty 1 drive cup

6920, qty 1
$4-40 \times 3 / 16$ screw

2291, qty 2 dowel pin
(5) Slide the second \#3977 bearing onto the input shaft, followed by the third \#2293 input shaft shim.
(6) Install and center the \#2291 dowel pin into the input shaft.
7 Slide a \#2270 drive cup onto the end of the input shaft.
8 Tighten it down with one \#6920 screw.
(3) Add the \#6299 small E-clip.
(4) Slide two \#2293 input shaft shims and one \#3977 bearing onto the \#3920 input shaft.

FRONT INPUT SHAFT ASSEMBLY
(1) Install and center the \#2291 dowel pin into the \#3920 front input shaft.
(2) Trim burrs from the drive pinion edge where shown above. Slide the \#3903 drive pinion onto the input shaft. Make sure the dowel pin aligns perfectly with the slot in the pinion.

BIAO
REMOVE THESE PARTS FOR:
Steps 7-10

step 7

 Trim any burrs from this edge of the holes with a hobby knife.1

TWO SPEED SHOES

(1) Deburr holes edges on \#2292 two speed shoes as shown.
(2) Install \#2289 set screws into the two speed shoes until the set screws are flush with the outer part of the shoes.
(3) Add a dab of \#6591
lube to the \#2289 ball and insert it into the hole, resting against the end of the set screw. Screw in the set screw until the ball is slightly above the flat surface on the inside shoe. We will make the final adjustment later.
(4) Repeat on the second shoe.

step 9

(1) Attach \#2264 50 tooth (smaller) spur gear to \#2287 two speed housing with three \#6920 screws.

RACER'S TIP: After running your car for a tank of fuel, remove your two-speed housing and clean any oil or residue from inside the housing and outside the shoes to ensure consistent shifting.

step 10

(1) Attach \#2266 54 tooth (larger) spur gear to the \#2288 one-way hub with three \#6920 screws.
(2) Slide the one-way hub onto the input shaft. Now push \#2661 e-clip into place.

BIGG
REMOVE THESE PARTS FOR:
Steps 11-12

3977, qty 2 $3 / 16 \times 3 / 8$ bearing, rubber sealed

2293, qty 3 input shaft shim dow, qty 2

2281, qty 1 brake disc

6920, qty 1 $4-40 \times 3 / 16$ screw

6299, qty 1 small E-clip

2270, qty 1 drive cup

step 11

(1) Slide one \#3977 bearing and two \#2293 input shaft shims onto the rear input shaft.
(2) Install and center a \#2291 dowel pin into the input shaft.
(3) Slide \#3903 drive pinion onto the end of the input shaft.
(4) Add a \#6299 small e-clip.

Trim any burrs from this edge of the drive pinion with a hobby knife.

step 12

(1) Slide on one \#3977 bearing onto the opposite end of the input shaft followed by the third \#2293 input shaft shim.
(2) Install and center a \#2291 dowel pin into the input shaft.
(3) Clean the \#2281 brake disc with motor cleaner. Place \#2281 brake disc onto \#2270 drive cup. Slide the drive cup with brake disc onto the input shaft. Tighten it down with one \#6920 screw.
(4) Slide one \#5407 O-ring into drive cup.

step 13

step 14

(1) Slide \#6863 bushing onto the end of the \#2276 brake cam.
(2) Angle the brake cam with bushing and slide it through the large hole of the \#2274 brake bracket. Press \#6863 bushing into the brake cam while still on the brake cam.

(1) Place \#2277 bushing in between the brake cam and brake bracket and press it into the brake bracket.
(2) Slide the brake cam into the bushing.
(3) Add \#2661 large E-clip.
(1) Slide \#2280 brake cam lever wire into the brake cam. Make sure that the wire is angled as shown at right. Slide the wire through the side of the cam so the brake cam pins are facing up.
(2) Secure with \#6920 screw.

step 17

(1) Place the front diff assembly and front input shaft assembly into the lower transmission case.
(2) Squeeze four beads of \#6591 diff lube equally spaced apart to the front side of the ring gear and pinion gear.
(3)

Attach the \#2368 upper transmission case to the lower case with six \#6924 screws. Do not overtighten.

step 16
(1) Attach \#2368 lower transmission case to the chassis with four \#6292 screws.

step 18

(1) Attach the brake cam assembly to the chassis with two \#6291 screws.Slide one \#2278 brake pad (steel side facing bulkhead) onto the \#2269 center bulkhead. Slide the second \#2278 brake pad (steel side facing away from bulkhead) onto the \#2269 center bulkhead.
(3)

Attach center bulkhead to the chassis with two \#6922 screws.

2368, qty 1 lower transmission case

6292, qty 4
4-40 x 3/8 screw

2262, qty 1 main drive shaft

step 20

(1) Place the diff assembly into the lower transmission case.
(2) Place one end of the \#2262 drive shaft into the rear input shaft assembly. The shaft may be a slightly snug fit in the cup. Install the opposite end into the front drive cup.
(3) Set the input shaft into place, making sure the brake disc is placed in between the brake pads.
(4) Squeeze four beads of \#6591 diff lube equally spaced apart to the front side of the ring gear and pinion gear.
(5) Attach \#2368 upper transmission case to the lower transmission case with six \#6924 screws.

step 21

(1) Align the \#2269 bearing cap over the bearing and attach with two \#6924 screws. Do not overtighten.

BIAT PARTS FOR: Steps 1-5

2254, qty pr front chassis braces, left \& right

6917, qty 8 $4-40 \times 3 / 8$ screw

6292, qty 6 $4-40 \times 3 / 8$ screw

2254, qty pr rear chassis braces, left \& right
 tower (front or rear)

7260, qty 4 4-40 nut

6924, qty 6 $4-40 \times 3 / 8$ screw

2260, qty 1
handle

Step 1

(1) Attach \#2254 right \& left front chassis braces to the transmission case with \#6917 screws and to the chassis with \#6292 screws.

step 3

(1) Push the \#6292 screws through the bottom of the chassis and place a \#5407 O-ring on each screw.
(2) Place \#2260 handle onto the screws and tighten the screws to compress the Orings.

step 4

(1) Install the \#7413 screws through the middle hole on the \#2250 front / rear tower.
(2) Then thread on the \#7260 nuts and tighten.

3 Repeat step for second tower.

$\operatorname{step} 5$

(1) Attach one shock tower assembly to the front transmission case and the second one to the rear transmission case with three \#6924 screws.

BMAE

REMOVE THESE PARTS FOR:
Step 1

2247, qty 2 pr steering/hub carrier left and right

7381, qty 4 CVD coupling

3888, qty 4 CVD dogbone

TOOLS USED

3977, qty 8 $3 / 16 \times 3 / 8$ bearing, rubber sealed

stop 1

CVD ASSEMBLY

(1) Spread some Associated \#6588 black grease inside the \#3886 axle hole where shown, then on the \#7381 coupling and insert the coupling into the axle.
(2) Slide the \#3886 axle into the \#3888 dogbone, aligning the cross pin holes.
(3) Insert the \#7381 cross pin, making sure it is evenly spaced on both sides of the dogbone.
(4) Add a small drop of MIP thread lock to the \#7381 set screw. Angle and turn the CVD so the set screw can be screwed in with the Allen wrench.
5 Repeat steps for the three remaining CVDs.

FRONT
Use this hole in the front steering/ hub carriers

STEERING / HUB CARRIER ASSEMBLY

© Slide one \#3977 bearing onto the axle. Slide the axle assembly into the back of the \#2247 steering/hub carrier
$(5$ Slide in a \#3965 bearing spacer
(8) Install the second \#3977 bearing into the steering / hub carrier, followed by one \#7368 thin spacer.
(9) Insert the \#7369 roll pin into the axle.

10 Repeat steps 6-9 for the three remaining steering / hub carriers.
(1) FRONT: Thread a \#6273 ball end into the bottom of one right and one left steering / hub carriers for the front. Add a \#7260 plain nut.
(12) REAR: Thread a \#2257 rear toe ball end into the bottom of one right and one left steering / hub carriers for the rear. Add a \#2257 large plain nut.

2246, qty 8 pivot ball

2249, qty 8 socket cap

6924, qty 16 $4-40 \times 3 / 8$ screw

Compare the front and rear upper arms. Opening A (front upper arm) is wider than opening B (rear upper arm)

step 2

(1) Insert one \#2246 pivot ball into the upper socket and one into the lower socket of the steering / hub carrier assemblies.
(2) Insert the \#2249 socket caps and secure them down with \#6924 screws. Tighten the socket cap screws so that the pivot ball moves freely without any binding or excess play.
3 Repeat for the remaining three steering / hub carriers.

step 3

FRONT UPPER SUSPENSION ARM

(1) Add a small amount of \#6588 black grease to the end of the threads on the pivot ball.
(2) Use your 5/64" Allen wrench to screw the pivot ball into the \#2233 left front upper suspension arm. Do not thread pivot ball all the way in.
3 Repeat for the right front.

step 5

(1) Add a small amount of \#6588 black grease to the end of the threads on the pivot ball.
(2) Use your Allen wrench to screw the pivot ball into the \#2233 front lower suspension arm.
(3) Slide your supplied track width gauge in between the steering / hub carrier assembly and the lower arm.
(4) Use your 5/64" Allen wrench to tighten the pivot ball until the gauge is sandwiched in between the two.
Turn the pivot ball counter clockwise until the gauge can be removed.
5 Repeat for the lower suspension arms for the right front, left rear, and the right rear.

9146, qty 4 2/56 x 3/16 screw

2239, qty 4 caster clip

2235, qty 2 front hinge pin

2235, qty 2 rear hinge pin
\qquad
1:1
1

2251, qty 4 ball cup, gray

6264, qty 2 steering link turnbuckle

step 1

(1) Line up the \#2243 rear upper suspension arm with the inner hole on the shock tower, making sure the CVD dogbone is in the slots of the outdrives. Push \#2235 hinge pin into the arm and the tower.
(2) Fasten \#9146 screw into the upper arm.

3 Repeat step 7 for the right rear.
Clip in the two \#2239 caster clips. Place one on each side of the tower. This sets your caster at 9 degrees.
4 Repeat step 6 for the right front.

step 8

(1) Twist the \#6274 ball cups onto the \#6264 turnbuckle until you get the dimension shown (steering turnbuckle).
Assemble both turnbuckles.
(2) Twist the \#2251 gray ball cups onto the \#2253 rear toe turnbuckle until you get the dimension shown (rear toe turnbuckle). Assemble both turnbuckles. This results in 2° rear toe.
(3) Snap all four turnbuckles into place where shown.

To screw ball cup onto turnbuckle:

1. Grip middle of turnbuckle with needlenose pliers.
2. Thread on ball cup by hand at first, then use turnbuckle tool to finish.
3. Squeeze turnbuckle onto ball end with needlenose pliers.

step 1

TRIM SHOCK PISTON
(1) Burrs on the \#6465 shock piston interfere with smooth shock action within the shock body. To remove from tree without creating burrs, twist up, not down. Remove two \#2 and two \#3 shock pistons.
(2) Remove remaining burrs carefully with a hobby knife.

$\operatorname{step} 3$

INTERNAL SHOCK ASSEMBLY
(1) (Assemble all four shocks at once.) Install the \#6469 O-ring over the threads of the \#3963 shock body.

step 2

VC FOAM AND BOBBIN
(1) Soak the \#8456 VC foam with \#5423 40wt shock oil and install it onto the \#8456 VC bobbin.

step 4

(1) Holding the shock upright, fill with oil to the top of the body.

(2) Slowly move the shaft up and down several times to allow air bubbles to escape to the top.

SETTING THE

 REBOUND(6) Move the shock shaft in and out a few times an then push it all the way in. It should be easy to push the shaft in until the eyelet hits the body
(3) Refill with oil to the top of the body.
(4) Push the shaft up until the piston is level with the top of the body. The oil will bulge up above the shock body.

5 Fill The \#6428 shock cap about halfway with oil and install onto the body. Try to retain as much oil as possible during assembly. The shaft will extend out as you tighten the cap down.

9 If the shock rebounds too fast, or you cannot push the shaft in until the eyelet hits the body, there is too much oil. Loosen the cap about a full turn and pump out a small amount of oil by pushing the shaft in. Retighten the cap and try steps 6-7 again.

Too much oil in the shock will result in leakage.

BIAF

REMOVE THESE

 PARTS FOR: Steps 5-8
$\operatorname{step} 5$

(1) Slide one \#3959 black O-ring into the groove in the \#3963 threaded shock collar.

(2) Put one drop of oil on the O-ring before you thread on the shock collar.

(3) Thread on the shock collar. Make sure that the shoulder is facing down when threaded on the body.

$\operatorname{stg} 6$

(1) Slide the \#3946 copper springs on the front shocks, and \#3944 gold springs on the rear shocks.
(2) Compress the spring to add the \#6475 spring cup to all four shocks.

FRONT SHOCK MOUNTING

(1) Add the \#6473 shock bushing to the front shock tower screw shown.
(2) Push the shock cap over the bushing and add a \#6472 shock nut. Do not over tighten or the shock will bind.
(3) Fasten the shock eyelet into the outer hole of the arm with a \#6925 screw.
4 Repeat steps for second front shock.

$\operatorname{sten} 8$

REAR SHOCK MOUNTING

(1) Add the \#6473 shock bushing to the rear shock tower screw shown.
(2) Push the shock cap over the bushing and add \#6472 shock nut. Do not over tighten or the shock will bind.
(3) Fasten the shock eyelet into the outer hole of the arm with a \#6925 screw.
4 Repeat steps for second rear shock.
Your front and rear shock collars set ride height. For more information on ride height, see page 30.

BMG

TOOLS USED

REMOVE THESE
PARTS FOR:
Step 1

7673, qty 3

5407, qty 3 red O-ring
$4-40 \times 5 / 16$ screw

7721, qty 1 fuel tank

sten 1

(1) Push the \#7673 screws through the bottom of the chassis and place a \#5407 red Oring on each screw.
(2) Set the \#7721 tank onto the screws and tighten the screws just enough to slightly compress the O-rings so the tank can't move around.

BIA

REMOVE THESE PARTS FOR: Steps 1-5B

7337, qty 8 steel washer

6917, qty 8
6917, qty 8

2256, qty radio tray

9180, qty 4 servo horn

3857, qty 1 short special
ball end, black

3720, qty 2 wire tie, 8"

7336, qty 2 servo mount

3718, qty 1 wire tie, $12^{\prime \prime}$

6918, qty 4 $4-40 \times 1 / 2$ screw

2252, qty 1 battery moun

sten 1

(1) Insert \#2258 receiver box into the \#2256 radio tray and secure with four \#9146 screws.
CAUTION: The box will fit tight.

(1) Find the appropriate \#9180 servo horn for your servo from the chart at right. Install the \#3857 short ball end into the servo arm. Fasten the servo arm down with the stock mounting screw that came with your servo. DO NOT POINT IT STRAIGHT UP! See below for correct angle.
(2) Find the appropriate thick or thin \#7336 offset spacer for your servo from the chart at right. Attach the spacer if any, in between the \#7336 mount and the servo with the \#7337 washers and \#6917 screws.

STEERING SERVO TYPE	\#7336 SPACER	\#9180 SERVO ARM
Airtronics 94102	no spacer	A
Airtronics 94738, 94157, 94158, 94257, 94258, 94357, 94358, 94452, 94453, 94751, 94755	thick spacer	A
Hitec HS-5625MG, HS-5645MG, HS-625MG, HS645MG	no spacer	H
Hitec HS-303, HS-300BB, HS-945MG, HS-925MG, HS- 5945MG, HS-5925MG, HS-525MG, HS-525BB, HS- 425BB, HS-422	thin spacer	H
JR Z4725, Z4750, Z2750, Z8450, Z8550, NES-4750	no spacer	J
JR Z250, Z550	thin spacer	J
Futaba S9204, S9250, S9450, S148	no spacer	F
Futaba S3003, S9202, S9101	thin spacer	F
Futaba S9404	thick spacer	F
KO PS-401, PS-2001, PS-2004, PS-2015, PS-2173, PS- 2174, PS-2123, PS-2143, PS-2144	thin spacer	J

step 3

See Radio Adjustments section of manual for more info on correctly setting steering linkage.

step 4

(1) Look at the chart at right to see if a \#2238 spacer is needed for your throttle servo. Attach the spacer if any, in between the radio tray and servo with the \#7337 washers and \#6918 screws.

THROTTLE SERVO TYPE	\#2238 SPACER	SERVO HORN
Airtronics 94102	no spacer	A
Airtronics 94738, 94157, 94158, 94257, 94258, 94357, 94358, 94452, 94453, 94751, 94755	spacer	A
Hitec HS-5625MG, HS-5645MG, HS-625MG, HS645MG HS-303, HS-300BB, HS-945MG, HS-925MG, HS- 5945MG, HS-5925MG, HS-525MG, HS-525BB, HS- 425BB, HS-422	no spacer	H
JR Z4725, Z4750, Z2750, Z8450, Z8550, NES-4750	no spacer	A
JR Z250, Z550	spacer	A
Futaba S9204, S9250, S9450, S148, S3003, S9202, S9101	no spacer	F
Futaba S9404	spacer	F
KO PS-401	spacer	A
KO PS-2001, PS-2004, PS-2015, PS-2173, PS-2174, PS- $2123, ~ P S-2143, ~ P S-2144 ~$	no spacer	A

step 51

USING A BATTERY HARNESS OR 5 CELL HUMP PACK
Place your batteries into your stock radio battery harness. Attach your harness to the \#2252 battery mount with two \#3720 wire ties, making sure the harness wires are facing the receiver box.
(2) Place the battery harness assembly up into the radio tray and fasten down with \#6917 screws.
(3) Attach the switch to the radio tray with the stock switch screws.

step 58

USING A FLAT 5 CELL RECEIVER PACK

(1) Place the receiver battery underneath the radio tray as shown, making sure to place it so the battery wire is facing the receiver box.
(2) Secure it down with \#3718 wire tie by sliding the tie into the first opening and wrapping it around the battery and sliding it up through the second opening.
V If you use a switch see step 5 \#3 at left.

6332, qty 1 body clip

6338, qty 1 antenna tube and cap

6727, qty 1 servo tape

6274, qty 2
ball cup

6292, qty 2 4-40 x 3/8 screw

step 6

(1) Feed your switch wires into location 1.
(2) Feed your steering servo wire into 2.
(3) Feed your throttle servo wire into 3.
(4) Feed your battery wires into 4.

step 1

(1) Place a piece of $\# 6727$ servo tape to the bottom of the receiver.
(2) Feed the antenna wire through the small hole in the receiver box. Before placing the receiver, move the wire off to the side of the box and then place the receiver into the box.
(3) Close the box and slip a \#6332 body clip in to hold it shut.
(4) Take your antenna wire and push it through the built in antenna mount in the radio tray.
(5) Slide the wire through \#6338 antenna and push the antenna tube firmly into the mount. Leave some slack at the bottom. Do not cut off excess antenna wire. Cap the other end with the black rubber cap.

step 8

(1) Twist \#6274 ball cups onto the \#3867 turnbuckle until you get the dimension shown.
(2) Snap one end of the ball end onto the servo arm.
(3) Place the radio tray temporarily on the chassis. Snap the second end of the turnbuckle onto the ball end of the swing rack. Now place the radio tray into place.
(4) Before attaching screws make sure the wires from your receiver box are lying flat so they won't get smashed. Attach the radio tray with four \#6917 screws for the top and two \#6292 screws for the bottom.

If you are using a rotary style carburetor start at step 1. If you are using a slide carburetor stari at step 2.

step 1
 motasy cabb oviy

(2) Use a wrench to loosen your high speed mixture screw. Turn the valve assembly until the fuel fitting is facing the direction shown below, then retighten the valve assembly.
(3) Loosen the screw or clamp bolt that holds the carburetor in place. Rotate the carb so it is perpendicular to the crank shaft as shown.
4 IF YOU HAVE AN SG CRANK SHAFT, GO TO STEP 3. IF YOU HAVE A STANDARD SHORT CRANK SHAFT, GO TO STEP 4.

(1) Attach a \#2326 2-56 ball end and a \#2326 2-56 plain nut to the lower hole in the throttle arm pivot. If the hole is too small for the ball end, drill it out with a \#43 or a $3 / 32$ drill bit. Be careful not to get any metal or plastic shavings into the carb opening.

$\operatorname{step} 2$

Use a 15 mm wrench to loosen and rotate the throttle ball as shown.

(2) Use a wrench to loosen your high speed mixture screw. Turn the valve assembly until the fuel fitting is facing the direction shown below, then retighten the valve assembly.
(3) Loosen the screw or clamp bolt that holds the carburetor in place. Rotate the carb so it is angled as shown below.
4 IF YOU HAVE AN SG CRANK SHAFT, GO TO STEP 3. IF YOU HAVE A STANDARD SHORT CRANK SHAFT, GO TO STEP 4.

$\operatorname{step} 3$

FLYWHEEL ASSEMBLY FOR SG CRANK SHAFT
(1) Slide on \#7618 collet
(2) Install \#2322 or \#2323 flywheel followed by \#2313 SG clutch nut.
3 Tighten the clutch nut securely with your supplied wrench, locking the flywheel to the collet.
4 GO TO STEP 5.
$\operatorname{stcp} 4$
FLYWHEEL ASSEMBLY FOR STANDARD SHORT CRANK SHAFT
(1) Slide on \#7618 collet.
(2) Install \#2322 or \#2323 flywheel followed by \#2312 standard clutch nut.
(3) Tighten the clutch nut securely down with your supplied wrench, locking the flywheel to the collet.

step 5

CLUTCH SHOE ASSEMBLY

(1) Install your \#2310 clutch shoes on the flywheel clutch pins.
(2) Place the \#2306 clutch springs onto the pins on top of the clutch shoes. Use a flat head screwdriver to snap the other side of the spring into the groove of the clutch nut, as shown at far right.

step 6

CLUTCH BELL ASSEMBLY

(1)

Thread the \#2299 (black) 26 tooth pinion onto the \#2295 clutch bell, making sure the shoulder side of the pinions goes on first.
(2) Thread on the second \#2297 (blue) 22 tooth pinion onto the clutch bell, making sure the shoulder side of the pinions goes on first.
(3) Slide on one \#2321 clutch shim followed by \#2320 non flanged
5 Slide on two \#2321 SG shims onto \#3934 screw and now tighten down the clutch bell. Use the two shims ONLY if you are using an SG crank shaft. If you are using an OS Max 12TR with an SG crank, use three \#2321 SG shims.
Remove oil residue with motor cleaner

2295
2299 (black)
2297 (blue) clutch bearing.
(4) Slide on the clutch bell assembly followed by \#2320 flanged clutch bearing.
step 1

Attach the \#2340 or \#2341 engine mounts to your engine with four \#7874 screws.

$\operatorname{sten} 8$

ENGINE INSTALLATION

(1) Place your engine assembly on top of the chassis. Attach the engine to the chassis with four \#7773 screws. Do not tighten the screws yet

GEAR MESH

2 Now we set the spur-to-pinion gear spacing, otherwise known as gear mesh. Make sure you can still slide your engine, then mesh the clutch bell pinions with the spur gears. The correct gear spacing is when the pinion is close to the spur gear, but if you hold the pinion gears, you should still be able to rock the spur gears back and forth slightly with light pressure. Roll the gears and check the mesh in several different locations on the spur gear. Now tighten the four motor screws. Recheck the mesh.

If you have a rear exhaust engine, go to step 9R.

If you have a side exhaust engine, go to step 98.

step9R

REAR EXHAUST ENGINE

(1) Attach the \#2350 rear exhaust manifold to your engine with \#2357 manifold spring--see two photos below.
(2) Cut a piece of \#7733 silicone tubing to 1 inch in length. Slide one end of
(3) the tubing about half way onto the muffler.
Slide the muffler with the tubing over the end of the manifold, making sure the manifold slides all the way into the muffler.
(4) Slide the \#2358 wire mount into the muffler and secure it with a \#2353 set screw.
5 Attach the other end of the wire mount to the chassis brace with one \#3216 washer and one \#6924 screw.
(6) Secure the silicone tubing with two \#3719 wire ties.
7 GO TO BAG H STEP 10.

2343, qty 1 manifold

7730, qty 1 muffler

7734, qty 1 manifold gasket

7733, qty 1 silicone tubing

7778, qty 2 3×30 screw gold

3719, qty 2 wire tie, 6"

2344, qty 1 wire mount

7730, qty 1 set screw

3216, qty 1 washer

7778, qty 2
lock washer

step 95

SIDE EXHAUST ENGINE
(1) Slide the two \#7778 lock washers onto the \#7778 screws. Attach the \#2343 manifold to the engine with the \#7734 manifold gasket in between with two \#7778 screws.
(2) Cut a piece of \#7733 silicone tubing to 1 inch in length. Slide one end of the tubing about half way onto the end of the manifold.
(3) Attach \#2344 wire mount to the \#7730 muffler with \#7730 set screw.
(4) Slide the end of the \#7730 muffler into the end of the tubing on the manifold to $1 / 8^{\prime \prime}$ from the manifold.
5 Attach the other end of the wire mount to the chassis brace with one \#3216 washer and one \#6924 screw.
(6) Secure the silicone tubing with two \#3719 wire ties.

REMOVE THESE PARTS FOR:
Step 10

7724, qty 1 fuel tubing

step 10

FUEL TUBING

(1) Cut one piece of \#7724 fuel tubing $43 / 4$ " long. Slide one end onto the fuel fitting on your engine.
(2) Run the fuel tubing along the side of the engine and place the second end into the first inlet of the fuel tank.
(3) Cut a second piece of \#7724 fuel tubing 10 " long. Slide one end into the hole of the muffler about $3 / 8$ ".
(4) Wrap the fuel tubing into a small coil and to hold the coil use a \#7709 wire tie. Tighten the wire tie just enough to hold the fuel tubing. Don't forget this step.
(5) Place the second end of tubing into the second inlet on the fuel tank.

If you have a slite carburetor, follow stens 118-125. If you have a rotary carthuretor, follow stens 11R-12R.

step 118 sIIDe ginib ovir

THROTTLE LINKAGE

NOTE: You must use a transmitter with end point adjustment (EPA) in order to use a slide carburetor.
(1) Choose the correct servo horn for your throttle servo from the chart on page 20, step 4.
(2) Notice that the servo horn has two arms next to each other with large holes. Thread a \#6918 screw through the large outside hole of your servo horn. Attach a \#2336 throttle pivot onto the screw then a \#4446 nut. Only tighten the nut down enough so that the pivot can still move freely.
(3) Thread \#2326 ball cup onto the end of the \#2326 throttle rod. Slide \#2326 throttle spring onto the throttle rod.
(4) Slide the throttle rod with the spring through the pivot and attach a \#2326 collar to the rod with a \#6951 set screw.
(5) Cut off the remaining part of the throttle rod, leaving $1 / 2$ " length protruding so you can adjust your throttle linkage.

step 128 sude ehib oniy

BRAKE LINKAGE

(1) Thread on one \#2336 adjustment nut onto the \#2326 brake rod about $9 / 16 "$ from the rod's threaded end. Feed the other end of the brake rod through the middle (small) hole of the servo horn.
(2) Slide on \#4118 spring followed by \#2326 washer.
(3) Slide the threaded end of the rod through the opening on the brake cam lever wire and then place the servo horn onto your throttle servo. Secure the servo horn to the servo with your stock servo screw.
(4) Thread on the second \#2336 adjustment nut so that about $1 / 16$ " of the brake cam wire protrudes from the end.
(5) Attach the throttle rod ball cup onto the ball end on the carburetor. SKIP STEP 11R-12R AND GO TO STEP 13.

BIGI
REMOVE THESE PARTS FOR:
Step 11R

2326, qty 2 collar

6951, qty 2 set screw

4449, qty 1 4-40 locknut

2326 , qty
ball cup

step 11R \quad ROTABY enab ovir

THROTTLE LINKAGE

(1) Choose the correct servo horn for your throttle servo from the chart on page 20, step 4.
(2) Notice that the servo horn has two arms next to each other with large holes. Thread a \#6918 screw through the large outside hole of your servo horn. Slide a \#6466 spacer and \#2336 throttle pivot onto the screw then a \#4446 nut. Only tighten the nut down enough so that the pivot can still move freely.
(3) Thread a \#2326 ball cup onto the end of the \#2326 throttle rod. Slide on a \#2326 collar and attach it 1/2" from the end of the ball cup with one \#6951 set screw. Slide the throttle rod through the throttle pivot.
(4) Slide one \#2326 throttle spring onto the throttle rod next to the pivot. Attach the second \#2326 collar to the rod with a \#6951 set screw.
(5) Cut off the remaining part of the throttle rod, leaving $1 / 2$ " length protruding so you can adjust your throttle linkage.

step 12R ROTARY OARB ONLY

BRAKE LINKAGE

(1) Thread on one \#2336 adjustment nut onto the \#2326 brake rod abo $9 / 16$ " from the rod's threaded end. Feed the other end of the brake rod through the middle (small) hole of the servo horn.
(2) Slide on \#4118 spring followed by \#2326 washer.
(3) Slide the threaded end of the rod through the opening on the brake cam lever wire and then place the servo horn onto your throttle servo. Secure the servo horn to the servo with your stock servo screw.
(4) Thread on the second \#2336 adjustment nut so that about $1 / 16$ " of the brake cam wire protrudes from the end.
(5) Attach the \#2326 ball cup onto the ball end on the carburetor.

brake cam lever

(3)

stock screw

ADJUSTING THROTTLE LINKAGE

(1) Turn on your transmitter and then the car's electronics (but don't start the engine). When at idle (trigger of transmitter not pulled), adjust the collar so there is $1 / 16$ " (1.58 mm) of space between the collar and throttle pivot.
(2) Apply full throttle (pull the trigger of your transmitter all the way back). Your carb should be almost fully open. If it is not, then adjust the collar near the throttle pivot. (You may also adjust your throttle trim according to your radio's instructions.)
(3) Now apply the brake. Your carb should be in idle position. The spring should not be completely compressed.

$\operatorname{stg} 2$

FRONT BUMPER

(1) Push \#2232 rubber pads into the \#2232 wide front bumper, making sure the shoulder is facing up.
(2) Place the wide front bumper onto the lower front bumper.
(3) Slide the \#2227 foam front bumper onto the bumper top plate assembly. Attach the foam and the bumper top plate to the lower bumper with three \#6923 screws on the bottom and one \#6924 screw on top.

step 3

BIGK

REMOVE THESE PARTS FOR:
Steps 1-2

3989, qty 4 TC wheel

3955, qty 4 foam insert

3955, qty 4
TC tire

3950, qty 4 hex adapter

6943, qty 4 locknut

step 1

(1) Make a $1 / 8^{\prime \prime}$ hole in one area of the \#3989 TC wheel.
(2) Push the \#3955 foam insert into the \#3955 tire. Make sure the insert is centered in the tire.
(3) Install the \#3955 tire and insert onto the \#3989 wheel.
(4) Glue the tire to the wheel with super glue
(cyoanacrylate glue or \#1597 tire adhesive) in four equally-spaced spots around the tire on both sides. WARNING! Follow the adhesive manufacturer's instructions for proper use and safety. Wear eye and hand protection.
TIP: Place a rubber band around the tire to hold it tight to the wheel while gluing.

5 Repeat steps for the three remaining tires.

step 2

(1) Install the \#3950 wheel hex drive adapter to the axle, lining up the roll pin with the slot in the hex adapter.
(2) Slide the wheels over the axle and tighten it down with a \#6943 lock nut.
3 Install the remaining tires.

FINGI ADJUSTMENTS

ADJUSTING CAMBER

To set the camber we recommend using our supplied \#1719 camber/rear toe-in gauge. When adjusting camber you need to have the car ready to run with no body.

\#1719 camber/rear toein gauge

Make these adjustments before racing

1. Set your car on a flat surface.
2. When using the camber / rear toe gauge, make sure that the number you want to set it at is at the bottom of the tire. The gauge has 1°,

2°, and 3° notations marked on it. Find the 2° and push it against the tire at the bottom.

Use your 5/64" Allen wrench to adjust the upper pivot ball to get 2°. We recommend 2° for most conditions.

CHECKING REAR TOE-IN

We recommended for you to start with 2° of rear toe-in, which is the default setup in the manual. To check or change rear toe-in use the supplied \#1719 camber / rear toe-in gauge.

1. Stand your car up vertically on the rear arm mount.
2. When using the camber/rear toe gauge, make sure that the number you want to set it at
is down at the bottom of the tire. The gauge has $1^{\circ}, 2^{\circ}$, and 3° notations marked on it. Find the 2° and push it against the tire at the bottom.

3. Use your supplied \#6956 molded turnbuckle wrench to adjust the rear turnbuckle to get the degrees you want.

3

ADJUSTING RIDE HEIGHT

The collars on the bodies can easily adjust the ride height. Use the supplied \#1719 track width/ride height tool. The ride height tool will set your car at 5.5 mm high.

1. When adjusting the ride height, have the car

\#1719 track width/ride height tool
ready to run with no body.
2. Set the car on a flat surface.
3. Slide the height gauge underneath the rear of the chassis, as shown. Raise or lower the shock collar until the gauge just touches the chassis. To get a better measurement on the

3

chassis, you might need to slide the gauge in the corner of the car. Check both corners of the rear.
4. Slide the gauge underneath the front of the car. Check both corners of the front.

CHECK RADIO / LINKAGE SETUP

CAUTION: Always turn your transmitter on first and off last. Remember this rule. If you start your car before turning on your transmitter then you may lose control of the car and damage the engine quickly.

Test the following transmitter functions without the engine started. These following steps will help you understand the operation of your transmitter.

1. Turn on the transmitter.
2. Turn the car receiver battery pack switch on. Both the steering servo and throttle servo should move to their respective neutral settings.
3. Turn the steering wheel on the transmitter left and right. The front wheels should turn left and right, then return to a perfectly straightahead position when the wheel is released. If they're a little off, set the steering with your steering trim. See your radio instruction

ADD AIR FILTER

NEVER run your touring car without an air filter. The filter is essential for keeping the dirt out of the engine. Refer to your engine manual for the recommended air filter for your engine. If you use a foam filter, use Associated's \#7710 foam filter treatment.

manual for this setting.
4. Pull the throttle trigger, which should open the carburetor on your engine.
5. Push the trigger forward, which should activate the brakes.
Hold the throttle open and roll the car over the ground. The car should roll freely. While it is rolling, push on the brakes. The car should come to a stop. If these steps do not produce these results refer to the linkage assembly setup in this manual.

BODY

This kit accepts most 200 mm touring car bodies. See body manufacturer's instructions on trimming and painting the body.

CAR FUEL

The proper fuel is very important for long engine life. Improper fuel can cause hard starting, poor performance, and excessive wear on the engine. The fuels we recommend for R/C car use are: O'Donnell Racing Fuel, Duratrax Red Alert fuel, Blue Thunder Race

MADTENTNGE

You will find your Nitro TC3 will give you many hours of trouble-free operation when you familiarize yourself with these maintenance procedures.

You should periodically check all the moving parts:

Formula, FSR fuel, Trinity, Byron's Originals, Traxxas Top fuel, and Wild Cat fuel. There are many other racing fuels; however, they must meet two requirements:

1. The fuel must contain at least 18% of both castor and synthetic oils.
2. You should try to keep the nitro
(nitromenthane) between 10\% to 20\%. The
best fuels also contain rust and corrosion inhibitors, anti wear agents, anti foaming agents and lubrication additives.

CAUTION: DO NOT use any type of airplane fuels. Airplane fuels may not have the necessary oil types and ratios needed for R/C cars.

Follow these steps to keep your car in shape for racing

Front and rear a-arms
Steering blocks
Steering linkage
Servo saver
Shocks
Clutch
Brake parts
Bushings and bearings
and other moving areas.

Check the radio system, the condition of the batteries, the fuel tank, and the hoses for leaks. Also check the firmness of the mounting of the receiver and servos, and check for any frayed wires or loose connections. Because of the vibration of gas engines, check the chassis and other critical screws for tightness after every run.

TUINH A STIUP TIPS

Your car is one of the most tunable touring cars on the market. This section will try to explain the parts and adjustments you can use to tune your car for different track conditions.

CASTER

Caster describes the angle of the kingpin from vertical when looked at from the side of the car. Positive caster means the kingpin leans rearward at the top.

The Nitro TC3 standard kit setup is 9° of caster. The car can be adjusted in 3° increments ($6^{\circ}, 9^{\circ}$, and 12°).

These tips prepare your car for maximum performance

Increasing caster in the nitro TC3 will give your car more turn-in steering, but less steering exiting the corners. It will also be more stable in bumpy conditions. Decreasing caster will give the car less turn-in steering, but will give your car more steering exiting corners. It will be less stable in bumpy conditions.

Change the caster by moving the caster clips shown on page 15 , step 6 . Both clips to the front results in 6° caster. Both clips to the rear results in 12° caster.

FRONT TOE-IN AND TOE-OUT

You can adjust front toe by turning the steering turnbuckles. Toe-in will make your car easier to drive by improving stability during acceleration. Toe-out will increase steering when entering corners, but will be slightly more difficult to drive. We suggest using 0° to 1° toeout on the nitro TC3.

Use this tool on the turnbuckle to adjust toe

ACKERMAN

This is a term describing the effect of the inside front wheel turning tighter than the outside front wheel. The standard setup works best in most conditions and is preferred by most of our team drivers.

By changing the two \#3857 special ball ends with two longer neck \#6270 ball ends to the swing rack, a more aggressive steering feeling can be achieved. This is because there will be less Ackerman.
\#3857 black short ball ends (in kit)

Standard Ackerman setup \#6270 silver long ball ends (optional)

Optional Ackerman setup

2 SPEED GEARING

Use the following combination of pinion and spur gears in the 2 speed to maintain the correct gear mesh.

20/24 with $52 / 48 \quad 21 / 27$ with $54 / 48$
$21 / 25$ wtih $52 / 48 \quad 20 / 24$ with $54 / 50$
$22 / 26$ with $52 / 48 \quad 21 / 25$ with $54 / 50$
$23 / 27$ with $52 / 48 \quad 22 / 26$ with $54 / 50$ (in kit)
20/26 with 54/48 $23 / 27$ with $54 / 50$

CAMBER

Camber describes the angle the wheels ride relative to the ground when looked at from the front or back. Negative camber means that the tire leans inward at the top. Positive camber means just the opposite, and should not be used. We suggest using 2° to 3° of negative camber on high traction tracks and using 1° to 2° on low traction tracks. Setting the camber was explained to you in Final Adjustments.

REAR TOE-IN

Toe-in is fully adjustable and can be adjusted by changing the rear turnbuckle length. The setup we recommend is 2° of toein on each side. The setting should work best in most conditions. Decreasing the rear toe you will decrease rear traction and add steering. We do not recommend running more than 3° of rear toe-in.

CAMBER LINK LOCATION

The Nitro TC3 has been thoroughly tested to find the best all-around positions. We suggest using the standard setting for almost all conditions.

The optional position will give your car more overall traction in slippery conditions.

Adjust reartoe by turning this turnbuckle with your turnbuckle wrench orneedlenose pliers

DIFF ADJUSTMENT

By adjusting the front and rear diffs, you can control the amount of steering.

See page 7 for a helpful chart explaining diff settings and their results.

DROOP

Droop can be adjusted on the Nitro TC3 to help speed up or slow down how fast the car changes direction when corning. The NTC3 standard setup is setting 4 in the front and setting 3 in the rear. This will work best in most track conditions. See page 5 for setting droop.

If your track is bumpy, you may want to add droop to your car by going to a lower droop gauge setting.

If your track has very high traction then you what to take droop out of your car by going higher on the droop gauge. Too little droop will cause a loss of traction.
higher traction
less droop

more bumps more droop

TWO-SPEED ADJUSTMENT

By increasing or decreasing the spring tension you can change the shift point of your two-speed. If you want the car to shift into second gear later, tighten down both screws equally $1 / 4$ of a turn to increase the spring tension. If you want the car to shift into second gear sooner, loosen both screws equally $1 / 4$ of a turn to decrease the spring tension. Make your adjustments in $1 / 4$ turn amounts. Run your car first before you make any adjustments to the two-speed.

To adjust your 2-speed (turn off your engine): 1. Lift the car and hold the spur gear in place with your thumb, the bell opening (3) facing up.

2. Turn the rear wheel slowly.
3. Watch for the adj. screw to appear in the opening of the 2 -speed bell. It will be a black screw, at an angle. When looking at the front of the 2 -speed, there will be a number 1 and 2 on the shoes where the adjustment

screws are located.
3. Insert your Allen wrench and adjust as needed.
4. Remove Allen wrench and turn the rear wheel again and repeat for the second set screw, adjusting it the same amount.

SHOCK SPRINGS

Shock springs keep your car level during acceleration, deceleration, and cornering.

Stiffer springs will help your suspension respond more quickly, but because of their stiffness will not absorb bumps as well. Use stiffer springs in high traction conditions.

Softer springs are best for slippery or bumpy conditions.

Part \#	Color Code	Rating
\#3941	Green	12 lbs.
\#3942	Sliver	14.5 lbs.
\#3943	Blue	17 lbs.
\#3944	Gold	19.5 lbs.
\#3945	Red	22 lbs.
\#3946	Copper	25 lbs.
\#3952	Purple	30 lbs.
\#3953	Yellow	35 lbs.
\#3954	White	40 lbs.

ANTI-ROLL BARS (optional)

Roll bars are used to stabilize a car from excessive chassis roll (which occurs when your car leans through the turns by centrifugal force). Anti-roll bars are generally used on smooth, high traction track conditions. If the track is bumpy and slippery, then roll bars are not needed.

If you're driving on a high traction condition and your car wants to oversteer, then use optional \#1715 front blade anti-roll bar kit. This will decrease the front chassis roll and decrease steering throughout the corner.

If your car is understeering, then try the optional \#3960 anti-roll bar kit in the rear only. The rear anti-roll bar will decrease rear chassis roll and decrease rear traction.

\#3960 Anti-roll Bar Kit (optional)

\#1715 Front Blade Anti-roll Bar Kit (optional)

CLUTCH ADJUSTMENT

When the engine revs increase, the clutch shoes, attached to the flywheel on the shaft inside the clutch bell, are flung outward by centrifugal force. The shoes engage to the inside of the clutch bell, which in turn power the clutch bell to accelerate the car. The shorter the clutch shoes or the stiffer the clutch spring (optional), the higher the engine must rev before the clutch shoes will engage. This is recommended for lower power engines. The stock (longer) length clutch shoes and stock clutch springs (softer) will have the quickest engagement. This is recommended for most track conditions and high power engines.

To adjust your clutch, you can change the number of shoes, alter their length or change the clutch spring. Changing shoes
mainly depends on the current track conditions. The stock clutch springs are recommended for most conditions. In general, the higher the traction the longer the shoes, which prevents tire spinning. To decrease the clutch engagement, try cutting the clutch shoes a little shorter using a hobby knife. Cut to equal lengths. Do not trim away more than necessary or your engine can get damaged due to the engine over-reving.

Optional Parts:

\#2324, non pull start 3-shoe flywheel
\#2325, pull start 3-shoe flywheel
\#2307, optional clutch springs

SETUP SHEET

A blank setup sheet for the NTC3 is included. Set up your NTC3 with the standard settings then deviate from them in response to your track conditions and driving style, as noted below.

Tips for beginners:

For best results, make only one setup change at a time, testing it before making another change. Make a copy of the setup sheet included in the back of this manual to help keep track of your changes.

Before you make any changes to the standard settings, make sure you can get around the track without crashing. None of your setup
changes will work if you cannot stay on the track.

Your goal is consistent lap times. Inconsistent lap times may indicate poor control. When you have consistent lap times, then make changes to your car.

If the change results in a faster lap, then mark the change in your setup sheet. If performance is worse, then revert back to the previous setup and try another change.

Fill out your setup sheet thoroughly when you are satisfied with it and file it away. It can be a practical guide for future track layouts and conditions you encounter.

TRACK WIDTH

You can adjust the track width of the NTC3. That is, you can widen the distance between the outside front wheels.

To adjust the track width of your car, see the instructions on page 14.

STANDARD SETTINGS for rubber

tires (See next page for standard settings for foam tires)

1. Front camber: 2°.
2. Front camber link: inner hole on tower.
3. Front caster: 9°.
4. Front toe: 0°.
5. Front ride height: 5.5 mm
6. Front Droop: 4 on droop gauge
7. Bump steer spacers: none.
8. Ackerman: \#3857 ball ends.
9. Front anti-roll bar: none.
10. Rear camber: 2°.
11. Rear camber link: inner hole on tower.
12. Rear toe-in: 2°.
13. Rear ride height: 5.5 mm
14. Rear anti-roll bar: none.
15. Rear Droop: 3 on droop gauge.
16. Driveshafts: MIP CVD's.
17. Shock body: alum. macro shock.
18. Shock oil: front \& rear: 40 wt .
19. Shock shaft, front \& rear: \#8844
20. Shock pistons: Front, \#3. Rear, \#2.
21. Shock springs: Front, copper. Rear, gold.
22. Shock mounting, front tower, middle hole. Arm, outer hole.
23. Shock mounting, rear tower, middle hole. Arm, outer hole.
24. Fuel brand: varies.
25. Fuel nitro: 20%.
26. Engine brand: varies.
27. Engine 12 or 15: varies.
28. Engine temp: about 220°.
29. Pull or non pull start: varies.
30. Carb type: varies.
31. Clutch shoes: uncut, with STD springs.
32. Radio: varies
33. Servo: varies.
34. 2-speed adj: $31 / 2$ turns c-clockwise.
35. 2-speed clutch: 22 \& 26
36. Tires, front: Pro-Line (\#3955 STD)
37. Tires, rear: Pro-Line (\#3955 STD)
38. Tire additive: none.
39. Inserts: incl. with tires.
40. Wheels: Pro-Line.
41. Spur gears: $50 \& 54$.
42. Track width: use track width gauge.
43. Lead weights: none.
44. Chassis: stock
45. Body: varies.
46. Wing: varies with body.

TRACK CONDITIONS

RACE COMMENTS

MAIN
 FINISH

QUALIFYING POS.
NOTES \qquad

CAR COMMENTS

NOTES \qquad

PERFORMANGE COMPONENTS FOR THE NITRO RC1OTC3

1402 FACTORY BLUE 1.375 Tumbuckles
1414 FACTORY BLUE 1.125 Turnbuckles
1415 FACTORY BLUE Rear Toe Turnbuckles
1450 FACTORY TEAM Ride Height Gauge, set ride height easily
1594 FACTORY TEAM Body Hole Reamer
1596 FACTORY TEAM Locking Adhesive, locking screws to metal
1597 FACTORY TEAM Tire Adhesive, glues tires to plastic wheels
1598 FACTORY TEAM Shock Cap, Blue anodized aluminum
1700 NTC3 FT Light Weight Two-Speed One-Way Hub
1701 NTC3 FT Light Weight Two-speed Clutch Housing
1702 NTC3 FT Light Weight Two-Speed Clutch Bell
1704 NTC3 Solid F/R Axle
1706 NTC3 FT Blue Alum. Center Bulkhead
1707 NTC3 Front One-Way assembly
1708 NTC3 FT Blue Alum. Pull Start Motor Mounts
1709 NTC3 FT Brake Cam Bearing Kit
1710 NTC3 FT Blue Alum. Non Pull Start Motor Mounts
1711 NTC3 FT Teflon Sealed Bearing Set
1712 NTC3 FT Blue Alum Main Drive Shaft
1713 FACTORY BLUE NTC3 Turnbuckle Kit
1714 NTC3 FT Swing Rack Bearing Kit
1715 NTC3 FT Front Blade Roll Bar Kit
1717 NTC3 FT Blue Alum. Blade Roll Bar Mounts
1719 FACTORY TEAM Camber + Track Width Tool
1721 Clutch Nut Wrench 3/8
1722 FACTORY TEAM Graphite Radio Tray
2234 NTC3 Carbon Front Arm Set
2241 NTC3 Carbon R/L Steering / Hub carriers
2244 NTC3 Carbon Rear Arm Set
2248 NTC3 Carbon F/R Shock Tower
2255 NTC3 Carbon Chassis Braces
2259 NTC3 Carbon Radio Tray
2261 NTC3 Carbon Handle

2324 NTC3 Non Pull 3 Shoe Flywheel
2325 NTC3 Pull Start 3 Shoe Flywheel
3888 FACTORY BLUE TC3 / NTC3 Aluminum CVD Bones
3939 TC3 / NTC3 Front One-way / Solid axle Differential Ring Gear with /Mounting Screws
3941 TC3 / NTC3 Green Spring, 12.0 lbs.
3943 TC3 / NTC3 Blue Spring, 17.0 lbs.
3945 TC3 / NTC3 Red Spring, 22.0 lbs.
3946 TC3 / NTC3 Copper Spring, 25.0 lbs.
3949 TC3 / NTC3 Wheel Hex Adapters, Graphite
3952 TC3 / NTC3 Purple Spring, 30.0 lbs.
3953 TC3 / NTC3 Yellow Spring, 35.0 lbs.
3954 TC3 / NTC3 White Spring, 40.0 lbs.
3960 TC3 / NTC3 Rear Anti-roll Bar Kit
3962 FACTORY BLUE-Anodized TC3 / NTC3 Threaded Shock Kit (4)
3963 FACTORY BLUE-Anodized Threaded Shock Body includes Collar and O-rings .35"
3964 TC3 / NTC3 UNOBTANIUM Shock Shafts
3965 TC3 / NTC3 Axle Bearing Spacers, Blue.
3968 FACTORY BLUE Counterfeit Transponder
3972 TC3 / NTC3 Blue Aluminum Hex Drives
3988 Complete TC3 / NTC3 Tuning Spring Kit (9 pair)
6439 FACTORY TEAM Shock Cap, Blue anodized aluminum
6937 FACTORY BLUE 4-40 Aluminum Locknuts
6943 FACTORY BLUE 8-32 Aluminum Locknuts
7710 Pre Filter Treatment

TSITHMMSSOCMIENS WE SIEFOR:

- Setup sheets
- New products
- Tuning tips - setting up your car to the track
- Customer support
- Body painting ideas in the Racer's Spotight section
- Computer wallpaper
- Catalog and manual
- Subscribe to our FREE Team Associated Insider's Newsletter— delivered right to your e-mail box!
- Racer apparel and car carrier
- Hobby shop \& track locations worldwide
- Spring rate chart and other charts
- Nitro engine troubleshooting tips
- Helpful tools
- R/C Forum

Nin回

